Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 96(15): 5746-5751, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38556995

RESUMO

Microflow porous graphitized carbon liquid chromatography (PGC-LC) combined with negative mode ionization mass spectrometry (MS) provides high resolution separation and identification of reduced native N-glycan structural isomers. However, insufficient spray quality and low ionization efficiency of N-glycans present challenges for negative mode electrospray. Here, we evaluated the performance of a recently developed multinozzle electrospray source (MnESI) and accompanying M3 emitter for microflow PGC-LC-MS analysis of N-glycans in negative mode. In comparison to a standard electrospray ionization source, the MnESI with an M3 emitter improves signal intensity, identification, quantification, and resolution of structural isomers to accommodate low-input samples.


Assuntos
Carbono , Espectrometria de Massa com Cromatografia Líquida , Carbono/química , Espectrometria de Massas em Tandem/métodos , Porosidade , Polissacarídeos/química , Espectrometria de Massas por Ionização por Electrospray/métodos
2.
iScience ; 25(9): 105031, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36111253

RESUMO

Apolipoproteins, the protein component of lipoproteins, play an important role in lipid transport, lipoprotein assembly, and receptor recognition. Apolipoproteins are glycosylated and the glycan moieties play an integral role in apolipoprotein function. Changes in apolipoprotein glycosylation correlate with several diseases manifesting in dyslipidemias. Despite their relevance in apolipoprotein function and diseases, the total glycan repertoire of most apolipoproteins remains undefined. This review summarizes the current knowledge and knowledge gaps regarding human apolipoprotein glycan composition, structure, glycosylation site, and functions. Given the relevance of glycosylation to apolipoprotein function, we expect that future studies of apolipoprotein glycosylation will contribute new understanding of disease processes and uncover relevant biomarkers and therapeutic targets. Considering these future efforts, we also provide a brief overview of current mass spectrometry based technologies that can be applied to define detailed glycan structures, site-specific compositions, and the role of emerging approaches for clinical applications in biomarker discovery and personalized medicine.

3.
Glycobiology ; 32(1): 36-49, 2022 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-34499167

RESUMO

O-Glycans on cell surfaces play important roles in cell-cell, cell-matrix and receptor-ligand interaction. Therefore, glycan-based interactions are important for tissue regeneration and homeostasis. Free-living flatworm Schmidtea mediterranea, because of its robust regenerative potential, is of great interest in the field of stem cell biology and tissue regeneration. Nevertheless, information on the composition and structure of O-glycans in planaria is unknown. Using mass spectrometry and in silico approaches, we characterized the glycome and the related transcriptome of mucin-type O-glycans of planarian S. mediterranea. Mucin-type O-glycans were composed of multiple isomeric, methylated, and unusually extended mono- and disubstituted O-N-acetylgalactosamine structures. Extensions made of hexoses and 3-O-methyl hexoses were the glycoforms observed. From glycotranscriptomic analysis, 60 genes belonging to five distinct enzyme classes were identified to be involved in mucin-type O-glycan biosynthesis. These genes shared homology with those in other invertebrate systems. Although a majority of the genes involved in mucin-type O-glycan biosynthesis were highly expressed during organogenesis and in differentiated cells, a few select genes in each enzyme class were specifically enriched during early embryogenesis. Our results indicate a unique temporal and spatial role for mucin-type O-glycans during embryogenesis and organogenesis and in adulthood. In summary, this is the first report on O-glycans in planaria. This study expands the structural and biosynthetic possibilities in cellular glycosylation in the invertebrate glycome and provides a framework towards understanding the biological role of mucin-type O-glycans in tissue regeneration using planarians.


Assuntos
Planárias , Animais , Glicômica , Mediterranea , Mucinas/metabolismo , Planárias/genética , Planárias/metabolismo , Polissacarídeos/química
4.
FEBS Lett ; 593(22): 3198-3209, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31529697

RESUMO

Planaria is an ideal system to study factors involved in regeneration and tissue homeostasis. Little is known about the role of metabolites and small molecules in stem cell maintenance and lineage specification in planarians. Using liquid chromatography and mass spectrometry (LC-MS)-based quantitative metabolomics, we determined the relative levels of metabolites in stem cells, progenitors, and differentiated cells of the planarian Schmidtea mediterranea. Tryptophan and its metabolic product serotonin are significantly enriched in stem cells and progenitor population. Serotonin biosynthesis in these cells is brought about by a noncanonical enzyme, phenylalanine hydroxylase. Knockdown of Smed-pah leads to complete disappearance of eyes in regenerating planaria, while exogenous supply of serotonin and its precursor rescues the eyeless phenotype. Our results demonstrate a key role for serotonin in eye regeneration.


Assuntos
Metabolômica/métodos , Planárias/fisiologia , Serotonina/metabolismo , Animais , Diferenciação Celular , Cromatografia Líquida , Espectrometria de Massas , Fenômenos Fisiológicos Oculares , Fenilalanina Hidroxilase/metabolismo , Regeneração , Células-Tronco/citologia , Células-Tronco/metabolismo , Triptofano/metabolismo
5.
J Biol Chem ; 293(18): 6707-6720, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29475940

RESUMO

Cell surface-associated glycans mediate many cellular processes, including adhesion, migration, signaling, and extracellular matrix organization. The galactosylation of core fucose (GalFuc epitope) in paucimannose and complex-type N-glycans is characteristic of protostome organisms, including flatworms (planarians). Although uninvestigated, the structures of these glycans may play a role in planarian regeneration. Whole-organism MALDI-MS analysis of N-linked oligosaccharides from the planarian Schmidtea mediterranea revealed the presence of multiple isomeric high-mannose and paucimannose structures with unusual mono-, di-, and polygalactosylated (n = 3-5) core fucose structures; the latter structures have not been reported in other systems. Di- and trigalactosylated core fucoses were the most dominant glycomers. N-Glycans showed extensive, yet selective, methylation patterns, ranging from non-methylated to polymethylated glycoforms. Although the majority of glycoforms were polymethylated, a small fraction also consisted of non-methylated glycans. Remarkably, monogalactosylated core fucose remained unmethylated, whereas its polygalactosylated forms were methylated, indicating structurally selective methylation. Using database searches, we identified two potential homologs of the Galß1-4Fuc-synthesizing enzyme from nematodes (GALT-1) that were expressed in the prepharyngeal, pharyngeal, and mesenchymal regions in S. mediterranea. The presence of two GALT-1 homologs suggests different requirements for mono- and polygalactosylation of core fucose for the formation of multiple isomers. Furthermore, we observed variations in core fucose glycosylation patterns in different planarian strains, suggesting evolutionary adaptation in fucose glycosylation. The various core chitobiose modifications and methylations create >60 different glycoforms in S. mediterranea. These results contribute greatly to our understanding of N-glycan biosynthesis and suggest the presence of a GlcNAc-independent biosynthetic pathway in S. mediterranea.


Assuntos
Dissacarídeos/metabolismo , Manose/metabolismo , Planárias/metabolismo , Polissacarídeos/metabolismo , Animais , Configuração de Carboidratos , Glicômica , Glicosilação , Isomerismo , Mesoderma/metabolismo , Metilação , Oligossacarídeos/química , Faringe/metabolismo , Planárias/fisiologia , Polissacarídeos/biossíntese , Regeneração , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA